Reactions of Boron Compounds with Difluorophosphoric Acid; Characterisation of the Tetrakis(difluorophosphato)borate Anion by Multinuclear (¹¹B, ¹⁹F, and ³¹P) Nuclear Magnetic Resonance Spectroscopy

Michael F. A. Dove,* Richard C. Hibbert, and Norman Logan

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

The tetrakis (difluorophosphato) borate anion, $[B(PO_2F_2)_4]^-(1)$, has been identified and characterised in solution by means of ¹¹B, ¹⁹F, and ³¹P n.m.r. spectroscopy. (1) is formed from H₃BO₃ and P₂O₃F₄ in HPO₂F₂. It is also the initial product of the reaction of BBr₃ or BCl₃ with excess HPO₂F₂; however, it is gradually converted to (2), which is believed to be $[BF(PO_2F_2)_3]^-$. (2) is also generated directly from either BF₃ or BF₄⁻ in P₂O₃F₄-HPO₂F₂ mixtures, in which it is gradually converted to (1).

Difluorophosphoric acid has been the subject of a number of reviews.¹⁻⁴ The study of solutes in this medium is made more difficult owing to the tendency of this compound to decompose,⁵ equation (i), even at room temperature. No simple anionic difluorophosphato-species, $[M(PO_2F_2)_n]^m$, have been characterised. However, Russian workers ⁶ have recently identified the mixed complexes $[MF_3(PO_2F_2)]^-$ (M = P, As, or Sb) in HPO₂F₂-MeCN mixtures.

$$2HPO_2F_2 \longrightarrow H_2PO_3F + POF_3 \qquad (i)$$

This paper describes the reactions of some simple boron compounds with HPO_2F_2 , with or without the anhydride $P_2O_3F_4$, and presents evidence from multinuclear n.m.r. spectroscopic studies for the formation of $[B(PO_2F_2)_4]^-$ and $[BF(PO_2F_2)_3]^-$.

Experimental

Reagents.—Commercial grade difluorophosphoric acid (Ozark-Mahoning) was purified by the method of Desmarteau and co-workers.⁵ The anhydride $P_2O_3F_4$ was produced from the acid according to Robinson;⁷ fractional distillation of the $P_2O_3F_4$ -HPO₂F₂ mixture was not carried out since this mixture was suitable for our purposes. Commercial grade (BDH) BBr₃ and BCl₃ were distilled *in vacuo* before use. Commercial grade H₃BO₃ (BDH) and BF₃ (Cumbria Gases) were used without further purification. NMe₄BF₄ was prepared from H₃BO₃, NMe₄OH, and AR grade hydrofluoric acid.

Sample Preparation.—All reactions were carried out on millimolar quantities of the boron compounds in valved 5-mm glass n.m.r. tubes. The moisture-sensitive reagents were transferred *in vacuo*. The reactions of BBr₃ and BCl₃ with HPO₂F₂ were vigorous and each resulted in the formation of a two-phase system, which became homogeneous only when shaken at room temperature.

N.M.R. Measurements.—All spectra were obtained using a Bruker WM250 pulsed Fourier-transform spectrometer with the samples at 22 °C. ¹¹B, ³¹P, and ¹⁹F spectra were obtained at 80.2, 101.2, and 235.36 MHz respectively. High-frequency chemical shifts were taken to be positive relative to the external standards BF₃·OEt₂, 85% phosphoric acid, and CFCl₃, respectively. The sealed 5-mm sample tubes were mounted coaxially in a 10-mm tube containing CDCl₃, to provide the deuterium lock for the spectrometer. Spectra of the samples were obtained at monthly intervals for up to 12 months.

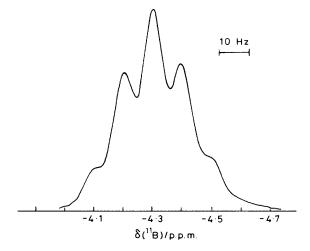


Figure 1. Boron-11 n.m.r. spectrum of species (1)

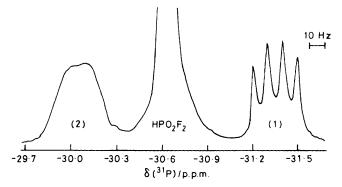


Figure 2. Phosphorus-31 n.m.r. spectrum (central resonances only) of the BCl_3 -HPO₂F₂ (mole ratio 1 : 24) system

Results

(a) BBr₃- and BCl₃-HPO₂F₂ Systems.—At mole reactant ratios HPO₂F₂: BX₃ (X = Br or Cl) above 9:1 the n.m.r. spectra demonstrated that these two systems are similar; only one boron-containing product, (1), was detected initially and this gave rise to multiplets in the ¹¹B, ³¹P, and ¹⁹F spectra: a 1:4:6:4:1 quintet in the ¹¹B spectrum (Figure 1), a 1:2:1 triplet of 1:1:1:1 quartets in the ³¹P spectrum (one quartet appears in Figure 2), and a doublet in the ¹⁹F spectrum. With

	¹¹ B			31P			¹⁹ F		
x		δ	² <i>J</i> (B-P)	δ	¹ J(P-F)	$^{2}J(P-B)$	δ	'J(F-P)	Species
Br	ſ	-4.4 (quin)	8	-31.5 (t of q)	986	8	-85.1 (d)	984	(1)
	ſ	-3.1 (s)		- 30.3 (t)	980		$\int -86.2$ (d)	980	(2)
~.							∖ −140.2 (s)		
Cl	ſ	—4.3 (quin)	9	- 31.4 (t of q)	985	9	-85.2 (d)	986	(1)
	J	-2.9 (s)		-30.2 (t)	9 86		$\int - 86.2 (d)$	982	(2)
) − 140.6 (s)		

Table 1. N.m.r. data * for the principal boron-containing products in BX_3 -HPO₂F₂ (X = Br or Cl) systems

* δ Values in p.p.m. (variations ± 0.4 p.p.m. for ³¹P and ¹⁹F, ± 0.2 p.p.m. for ¹¹B); J values in Hz [variations ± 6 Hz for ¹J(P-F) and ± 2 Hz for ²J(B-P)]; quin = quintet, t of q = triplet of 1 : 1 : 1 ; 1 quartets, d = doublet, s = singlet, and t = triplet.

Table 2. ³¹P N.m.r. data ^{*a*} for by-products in BX_3 -HPO₂F₂ (X = Br or Cl) systems

			δ/p.	p.m.	J(P-F)/Hz		
2	x	Product	Observed	Literature	Observed	Literature	
Br		∫ POBr₂F	-45.4 (d)	-48.3 ^b	1 250	1 263 [»]	
ÐI	4	POBrF ₂	-26.6 (t)	-28.0 ^b	1 195	1 203 "	
		(POCl ₂ F	4.8 (d)	0.0 *	1 192	1 180 "	
Cl	4	POCIF ₂	- 10.9 (t)	-15.0 *	1 141	1 138 "	
		HPO ₂ CIF	3.1 (d)	- 2.0 °	1 068	1 050 °	
Br,C	, ור	ſPOF3	- 34.2 (q)	- 35.5 ª	1 053	1 058 4	
ы,с	- I	(H₂PO₃F	- 5.8 (d)	-8.3 °	960	955 °	

^a q = Quartet (1:3:3:1); for other symbols see Table 1. ^bG. Mavel, Ann. Rep. NMR Spectrosc., Sect. B, 1973, 5, 1. ^c Ref. 4. ^d Ref. 1. ^eG. A. Olah and C. W. McFarland, Inorg. Chem., 1972, 2, 845.

time a second boron-containing species, (2), was detected which eventually (after *ca.* 3 months) became the major product. The ¹¹B, ³¹P, and ¹⁹F spectra of (2) comprised a broadened singlet, a triplet, and a doublet, respectively (Table 1); in addition there was a broadened singlet F resonance in the B-F region.

A number of other reaction products was detected by ³¹P and ¹⁹F n.m.r. spectroscopy in the two series of reactions after *ca*. 3 months. The ³¹P n.m.r. parameters, as well as the assignments to known phosphorus(v) species are shown in Table 2. Additional resonances grew in the ³¹P and ¹⁹F spectra: the phosphorus resonances are probably doublets, but tend to be overlapped by adjacent resonances, whereas the fluorine resonances are well defined doublets, in the P-F region, with coupling constants between 940 and 960 Hz, and singlets in the B-F region.

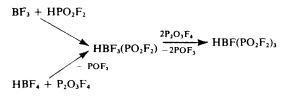
(b) $H_3BO_3-P_2O_3F_4-HPO_2F_2$ System.—The only boroncontaining product formed in this system was species (1) on the basis of the ¹¹B, ³¹P, and ¹⁹F n.m.r. spectra. It was evident that this species is stable for at least nine months at room temperature in a solution containing 1 mmol H_3BO_3 dissolved in $P_2O_3F_4$ (5 mmol) and HPO_2F_2 (3 mmol). No other products were detected in this reaction system.

(c) $BF_3-P_2O_3F_4-HPO_2F_2$ and $NMe_4BF_4-P_2O_3F_4-HPO_2F_2$ Systems.—The reaction of BF_3 with HPO_2F_2 , in the absence of $P_2O_3F_4$, does not generate either (1) or (2) and will not be discussed further here. NH_4BF_4 and NMe_4BF_4 were found to be insoluble in pure HPO_2F_2 ; however, the reaction of either BF_3 or NMe_4BF_4 with $P_2O_3F_4-HPO_2F_2$ mixtures gives rise to solutions showing resonances attributable to (2) as well as POF_3 . It was noticed that in the presence of excess $P_2O_3F_4$ ($P_2O_3F_4: B > 7: 1$) (2) was gradually converted to (1). The n.m.r. parameters for these reaction products are essentially identical with those listed in Table 1; however, the ¹¹B couplings in the ³¹P spectra were less well resolved.

Discussion

The only boron-containing product common to all of the five sets of reactions described above is species (1). From the ¹¹B, ³¹P, and ¹⁹F n.m.r. spectra it can be unambiguously identified as $[B(PO_2F_2)_4]^-$: the ¹¹B⁻³¹P coupling constant, 8.5 \pm 0.5 Hz, is evident in both the ¹¹B (a binomial quintet) and ³¹P (a 1:1:1:1 quartet) n.m.r. spectra and the ³¹P⁻¹⁹F coupling constant, 986 Hz, in both the ³¹P (a 1:2:1 triplet) and the ¹⁹F (a doublet) spectra (Figures 1 and 2, Table 1). Its formation from BX₃ (X = Cl or Br) and HPO₂F₂ can be described by equation (ii); the fate of HX is discussed below. The production of the same species from H₃BO₃, BF₃, and BF₄⁻ by

$$BX_3 + 4HPO_2F_2 \longrightarrow 3HX + HB(PO_2F_2)_4$$
 (ii)


$$H_{3}BO_{3} + 3P_{2}O_{3}F_{4} \xrightarrow{HPO_{2}F_{2}}$$

2HPO₂F₂ + HB(PO₂F₂)₄ (iii)

$$BF_3 + HPO_2F_2 + 3P_2O_3F_4 \xrightarrow{P_2O_3F_4(excess)} 3POF_3 + HB(PO_2F_2)_4 \quad (iv)$$

$$BF_{4}^{-} + HPO_{2}F_{2} + 4P_{2}O_{3}F_{4} \xrightarrow{P_{1}O_{3}F_{4}(excess)}{POF_{3} + PO_{2}F_{2}^{-} + HB(PO_{2}F_{2})_{4}} (v)$$

reaction with HPO_2F_2 in the presence of the anhydride, $P_2O_3F_4$, is shown in equations (iii), (iv), and (v), respectively. It is assumed that the protonic acid $HB(PO_2F_2)_4$ will function as a strong acid in HPO_2F_2 and will protonate not only $[PO_2F_2]^-$, equation (v), but even HPO_2F_2 to form the conjugate acid, $[PF_2(OH)_2]^+$. This behaviour is analogous to that of $HB(HSO_4)_4$ in H_2SO_4 .⁸ The tetrakis(difluorophosphato)borate anion identified in these systems takes its place alongside other BZ_4^- species, $Z = NO_3$,⁹ SO₃Cl,¹⁰ ClO₄,¹¹ and OTeF₅.¹² Both the new anion as well as the OTeF₅ derivative are of interest in that the two-bond spin-spin coupling of ¹¹B is apparent in both the ¹¹B and ³¹P or ¹²⁵Te n.m.r. spectra.

The identity of species (2), which is formed initially from BF_3 or BF_4^- with $P_2O_3F_4$ - HPO_2F_2 mixtures and eventually from BX_3 (X = Cl or Br) and HPO_2F_2 , is not immediately obvious. The ³¹P n.m.r. spectrum shows a broadened triplet, $J = 980 \pm 5$ Hz, confirming the presence of one or more diffuorophosphato-groups, although there is no resolved ¹¹B-³¹P coupling in either the ¹¹B or the ³¹P spectra. The ¹⁹F spectrum shows the doublet, J = 980 Hz, expected for a PO_2F_2 group but also a resonance in the B-F region, the width of which is consistent with ¹J(B-F) < 15 Hz. It must therefore be inferred that (2) is a species of the type $[BF_{4-x}(PO_2F_2)_x]^-$

Scheme.

or a related neutral species: the lack of resolvable ${}^{11}B^{-31}P$ coupling in the spectra would reflect the quadrupolar broadening expected for these lower symmetry species.

Estimates of the ratios of PO_2F_2 : F : B in species (2) were obtained from the ¹¹B,³¹P, and ¹⁹F n.m.r. spectra of samples in which the only boron-containing species detectable were (1) and (2). The relative concentrations of (1) and (2) in each sample were derived from the areas in the ¹¹B spectra; the ratio PO_2F_2 : B = 2.9 \pm 0.4 was then obtained from the ³¹P spectra assuming that species (1) is indeed [B(PO_2F_2)_4]⁻; similarly the ratio PO_2F_2 : F = 2.9 \pm 0.4 was calculated from the areas under the P-F and B-F resonances for species (2). The ratios derived in this way are based upon measurements from three different solutions and three sets of spectra. We must conclude that the available evidence is consistent with the formulation [BF(PO_2F_2)_3]⁻ for species (2).

Our observation that $[BF(PO_2F_2)_3]^-$ is the initial product in the reactions of either BF₃ or BF₄⁻ with P₂O₃F₄-HPO₂F₂ mixtures is readily understood if the replacement of the first three fluorines of BF₄⁻ takes place in the time required to prepare the samples for study (Scheme). The substitution of the remaining fluorine by PO₂F₂ is a relatively slow reaction; it can be hastened by adding excess P₂O₃F₄ whose reactivity towards non-metal fluorides, *e.g.* XeF₂,¹³ helps to compensate for the great affinity boron shows for fluoride.

The course of the reaction of BX_3 (X = Br or Cl) is clearly different; the initial product, $[B(PO_2F_2)_4]^-$, is formed because the B-X bonds are readily cleaved by HPO_2F_2 . However, our results show that species (1) is gradually converted to (2) and this must be associated with the presence of HX, equation (ii), as well as the absence of $P_2O_3F_4$. Reactions (vi)—(x) are consistent with these observations and also with the formation of POXF₂, POX₂F, and HPO₂ClF (HPO₂BrF is said to be unstable ¹⁴) which are phosphorus-containing by-products of these reactions. Hydrogen fluoride was not detected by ¹⁹F n.m.r. spectroscopy nor were the reaction tubes etched so we infer that reaction (x) is rapid. It must be recognised that processes other than (x) may lead to transfer of fluoride to boron. There is evidence that the replacement of PO₂F₂ by F does not stop at the monofluoro-compound, species (2); our results do not allow us to characterise the subsequent products satisfactorily.

$$HX + HPO_2F_2 \xrightarrow{slow} POXF_2 + H_2O \qquad (vi)$$

$$HX + HPO_2F_2 \xrightarrow{\text{slow}} HPO_2XF + HF \qquad (vii)$$

$$HX + HPO_2XF \xrightarrow{\text{slow}} POX_2F + H_2O \qquad (viii)$$

$$H_2O + HPO_2F_2 \longrightarrow H_2PO_3F + HF$$
 (ix)

$$HF + [B(PO_2F_2)_4]^{-} \xrightarrow{rast} [BF(PO_2F_2)_3] + HPO_2F_2 (x)$$

Acknowledgements

We thank the S.E.R.C. for a Research Fellowship (to R. C. H.) and for a Research Grant towards the cost of the Bruker WM250 PFT n.m.r. spectrometer.

References

- 1 R. Schmutzler, Adv. Fluorine Chem., 1965, 5, 31.
- 2 D. A. Palgrave, in 'Mellor's Comprehensive Treatise on In-Inorganic and Theoretical Chemistry,' Longman, London, 1971, vol. 8 (Suppl. 3), p. 852.
- 3 A. D. F. Toy, in 'Comprehensive Inorganic Chemistry,' eds. J. C. Bailar, H. J. Emeléus, R. Nyholm, and A. F. Trotman-Dickenson, Pergamon Press, London, 1973, vol. 2, p. 536.
- 4 K. Dehnicke and A. F. Shihada, Struct. Bonding (Berlin), 1976, 28, 51.
- 5 P. A. Bernstein, F. A. Hohorst, M. Eisenberg, and D. D. Desmarteau, *Inorg. Chem.*, 1971, 10, 1549.
- 6 E. G. Il'in, M. Maizel, M. N. Scherbakova, G. U. Volf, and Yu A. Buslaev, *Dokl. Akad. Nauk SSSR*, 1982, **266**, 878.
- 7 E. A. Robinson, Can. J. Chem., 1962, 40, 1725
- 8 R. H. Flowers, R. J. Gillespie, and J. V. Oubridge, J. Chem. Soc., 1956, 1925.
- 9 C. R. Guibert and M. D. Marshall, J. Am. Chem. Soc., 1966, 88, 189.
- 10 G. Mairesse and M. Drache, Acta Crystallogr., Sect. B, 1980, 36, 2767.
- 11 T. Chausse, J. L. Pascal, A. Potier, and J. Potier, Nouv. J. Chim., 1981, 5, 261.
- 12 H. Kropshofer, O. Leitzke, P. Peringer, and F. Sladky, *Chem. Ber.*, 1981, **114**, 2644.
- 13 M. Eisenberg and D. D. Desmarteau, Inorg. Chem., 1972, 11, 1901.
- 14 H. Falius and K. P. Green, Angew. Chem., Int. Ed. Engl., 1971, 10, 555.

Received 25th January 1984; Paper 4/136